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Measuring Distance-to-Default 
for Financial and Non-Financial 
Firms

INTRODUCTION

This article reviews several 
empirical methodologies for 
estimating Distance-to-

Default (DTD), a popular measure 
for gauging how far a limited- liability 
firm is away from default. We focus 
on the idea behind each method and 
discuss its strengths and weaknesses 
both conceptually and through the 
use of concrete examples. The meth-
odological differences and implica-
tions are brought to the fore by 
analyzing several banks and insur-
ance companies, which are typically 
of high financial leverage. We show 
that distortion can be substantial 
when an inappropriate estimation 
method is applied.

DTD has been widely adopted by 
academics in financial research and 
extensively used in business applica-
tions by industry practitioners. The 
academic papers that use DTD are too 
numerous to list here whereas in the 
commercial applications, Moody’s 
KMV model is arguably the most 
prominent one. The precise definition 
of DTD depends on a theoretical 
model, particularly the seminal credit 
risk model of Merton (1974), which 
treats corporate debt as an option-like 

financial instrument. Conceptually, a 
firm’s asset value evolves according 
to some stochastic dynamic and its 
debt will be honored when the asset 
value stays above the promised pay-
ment in some future time stipulated 
under the debt contract. Otherwise, 
this firm is in default and its debt 
holders can only recover a partial 
amount equal to what is left of the 
firm. 

Even though the future asset value 
of a firm cannot be known today, its 
current value serves as the natural 
base with which one can assess how 
likely the firm will default in the 
future. For example, when the current 
firm value is much higher than its 
promised future payments, the likeli-
hood of default will be small simply 
because the firm has significant 
buffer to absorb losses in its asset 
value. This thinking underlies how 
we traditionally view corporate finan-
cial leverage, such as the debt-to-
asset ratio. A lower-leverage firm is 
expected to be more resilient to future 
losses. Since the asset value moves 
randomly due to external shocks, the 
leverage ratio alone cannot be good 
enough to adequately capture the 
notion of DTD. The trend and volatil-
ity of the asset value movements 
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must play an important role in determining the likeli-
hood of default, because the same level of buffer may 
not be sufficient to withstand potential losses when 
the firm’s asset value is highly volatile. Put simply, a 
good DTD must be a leverage ratio adjusted for trend 
and volatility of the firm’s asset value.

We introduce the Merton (1974) model to define 
such a DTD. Although DTD is an appealing concept, 
it runs into two kinds of implementation challenges. 
Computing DTD requires knowing the market value 
of the firm’s assets and the parameters governing the 
asset value movements (trend and volatility). But the 
market value of a firm’s assets as postulated in the 
Merton (1974) model cannot be directly observed. 
Without a time series of observed asset values, it is 
obviously difficult to estimate the model parameters 
that define trend and volatility of the asset value 
movements. Different estimation methodologies have 
been proposed in the literature; for example, (1) the 
market value proxy method used in Brockman and 
Turtle (2003) and Eom, Helwege and Huang (2004), 
among others, (2) the volatility restriction method 
proposed by Jones, Mason and Rosenfeld (1984) and 
Ronn and Verma (1986), (3) the KMV iterative 
method described in Crosbie and Bohn (2003), and 
(4) the transformed-data maximum likelihood method 
by Duan (1994, 2000). We describe these methodolo-
gies and discuss their strengths and weaknesses with 
concrete examples. Specifically, we use financial 
firms to illustrate the limitation of the KMV estima-
tion method. Because financial firms typically have a 
large proportion of liabilities that cannot be accounted 
for by the KMV estimation method (for example, 
policy obligations of an insurance company), the 
method tends to inflate asset volatility and cause a 
distortion to DTD. We argue that the maximum likeli-
hood method proposed first by Duan (1994) and 
modified later by Duan (2010) and Duan et al. (2012) 
to deal with financial firms is the most appropriate and 
flexible method for estimating DTD.

The second application challenge arises from apply-
ing DTD strictly according to the structural credit risk 
model as defined. The Merton (1974) model and many 
subsequent models along the same line are typically 
classified in the literature as structural credit risk mod-
els in contrast to reduced-form models. Strictly 

following the Merton (1974) model, one can obtain a 
firm’s default probability by directly applying the 
cumulative normal distribution to the negative of 
DTD. But the results from such a direct and consistent 
application of the structural model are at odds with 
empirical default rates. Academic researchers and 
industry practitioners have long realized that DTD is 
highly informative about defaults, but it must be used 
along with other variables to achieve good perfor-
mance.1 Further calibration through a reduced-form 
model, such as logistic regression, is a must in prac-
tice. It is somewhat ironic to say that DTD, as a meas-
ure defined by a structural credit risk model, must be 
further calibrated by a reduced-form model to yield 
good empirical performance. How DTD can be intel-
ligently applied is not within the scope of this article. 
We bring up this issue so that readers can have a gen-
eral awareness of the limitation of applying DTD 
strictly in accordance with the Merton (1974) model 
even though DTD is built upon that model.

I. THE DISTANCE-TO-DEFAULT

The Merton (1974) model assumes that firms are 
financed by equity, with its value at time t denoted by 
S

t
, and one single pure discount bond (denoted by D

t
) 

with maturity date T and principal F. The asset value 
V

t
 follows a geometric Brownian motion:

 .t t t tdV V dt V dWµ σ= +  (1)

Here, W
t
 is a standard Brownian motion. Due to 

limited liability, the equity value at maturity is
max( ,0).T TS V F= -  Therefore, the equity value at 

time t ≤ T by the Black-Scholes option pricing for-
mula becomes

( )( )( , ) ( ) ,r T t
t t t tS V V N d e FN d T tσ σ− −= − − −

 
(2)

where r is the instantaneous risk-free rate, N(.) is 
the standard normal cumulative distribution function, 
and
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(3)

1250006.indd   961250006.indd   96 6/29/2012   11:42:15 AM6/29/2012   11:42:15 AM



GLOBAL CREDIT REVIEW VOLUME 2 97

FAb1423  Global Credit Review Volume 2  29 June 2012 11:20 AM

Following the Merton (1974) model, it can be 
shown that the probability of the company’s default at 
time T evaluated at time t is N (−DTD

t
) where the 

DTD at time t is defined as
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ln ( )
2

DTD .

t

t
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T t
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T t

σµ

σ

   + − −      
=

−  

(4)

Since the standard normal distribution function is 
universal, the sole factor that determines the default 
probability is the DTD. As the formula suggests, DTD 
is the logarithm of the leverage ratio shifted by the 
expected return (µ − σ 2/ 2)(T − t), and scaled by the 
volatility T tσ − .

Consider two firms with identical leverage ratios 
and volatilities, but  the asset value of one is expected 
to increase at a faster rate than the other. We naturally 
expect the one with a higher expected return to be fur-
ther away from default, i.e., have a larger DTD. If two 
firms have identical leverage ratios and expected 
returns, their volatilities will determine which one is 
farther away from default. It is evident that the conclu-
sion depends on the sign of the numerator. If the 
numerator is positive, meaning that the asset value will 
cover the debt obligation on average, a lower volatility 
should make the firm less likely to default, and it 
indeed has a larger DTD. When the numerator is nega-
tive, the situation can be understood as the firm is on 
average not expected to meet its debt obligation in the 
future. A higher volatility will make DTD less nega-
tive, which is consistent with the intuition that the firm 
has a higher chance, due to a higher volatility, to get its 
future asset value to exceed the debt obligation. 

The default probability of interest is naturally the 
one under the probability law that governs the physi-
cal movement of the asset value; that is what the DTD 
formula in Equation (4) intends to capture. In the 
credit risk literature, the risk neutral probability often 
surfaces to describe a hypothetical scenario in which 
economic agents are risk neutral. Were economic 
agents indeed risk neutral, the expected return on finan-
cial investment would have to equal the risk-free rate of 
return. By implication, parameter µ in Equation (4) 
should be replaced by r under the hypothetical sce-
nario. Computing the risk-neutral DTD and then the 

risk-neutral default probability does not need the 
value of µ. Moreover, the volatility parameter, σ can be 
obtained by just calibrating a pricing model to 
the observed market price of debt and/or prices of 
some credit derivatives. Obviously, the risk-neutral 
default probability is easier to obtain. However, one 
should be mindful of the fact that in theory it is not the 
default probability to be physically experienced. 
Since it is the physical DTD that we are after in prac-
tice, we should have suitable estimates for both 
expected return and volatility.

Due to the nature of diffusion models, however, 
parameter µ cannot be estimated with reasonable pre-
cision using high frequency data over a time span of 
several years, a well-known fact in the financial 
econometrics literature. The technical reason for this 
result is that parameter µ in Equation (1) is accompa-
nied by a time factor of dt whereas parameter σ is by 
a time factor of dt which is implicit in dW

t
. Data 

sampled frequently is less informative about µ than σ, 
because dt is much smaller than dt when the value 
of dt is small. With the estimation precision issue in 
mind, it makes empirical sense to avoid using µ in the 
DTD estimation, particularly when DTD is only used 
as an input to a reduced-form model to be further cali-
brated to empirical default rates. Therefore, it may be 
advisable to use the following alternative form of 
DTD to reduce sampling errors:

 

*
ln

DTD

t

t

V

F

T tσ

 
  

=
−  

(5)

Note that DTD* amounts to setting µ = σ 2/ 2 in 
Equation (4), and its calculation does not require the 
value of µ.2 As shown later in this paper, estimated 
DTD* is much more stable than DTD.

II. ESTIMATION METHODS

There are several difficulties in implementing the 
Merton (1974) model. First, the asset values are not 
directly observable, and therefore they are not availa-
ble for plugging into the DTD formula directly even if 
the model parameters were readily available. Second, 
the parameters µ and σ governing the unobserved asset 
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value process are unknown and need to be estimated. 
But their estimation becomes a serious challenge sim-
ply because the asset values are not directly observed. 
Several estimation methods are commonly applied in 
the finance literature and in business practice, but not 
enough attention is paid to their theoretical and 
 empirical shortcomings. We introduce these methods 
through the use of concrete examples and discuss their 
limitations and shortcomings. Our discussions specifi-
cally touch upon a new methodological advancement 
for dealing with financial firms which factors in their 
somewhat unique liability structure.

We use three different types of firms in our empiri-
cal illustration. They are IBM (a US industrial firm), 
Barclays (a British bank) and Tokio Marine (a Japanese 
insurance company). These three firms are used for 
general comparison of different estimation methods. 
Later, we will focus on financial firms to zero in on 
the difference between the KMV method and the 
transformed-data maximum likelihood method. For 
that, we use three banks (Bank of America, Barclays, 
and DBS) and three insurance companies (Sun Life, 
AXA SA and Tokio Marine) from different regions of 
the world so as to appreciate that the methodological 
impact is far reaching.

2.1. The Market Value Proxy Method

It is easy to obtain the equity value of an exchange 
listed firm, but the same cannot be said about the asset 
value. A direct valuation of asset value is practically 
impossible, because a firm as a going concern pre-
sumably possesses intangible assets and their values 
are hard to determine. Adding together the market 
values of equity and debt to arrive at the market value 
of the firm makes sense conceptually, but the market 
value of debt is hard to come by because a typical firm 
will have a large portion of debt in some non-tradable 
forms. Thus, a hybrid approach of adding market 
capitalization (equity value) to the book value of lia-
bilities became very popular in corporate finance lit-
erature. The papers using this market value proxy 
method to obtain firm value are too numerous to men-
tion. If one adopts the market value proxy method, 
estimating the two parameters (µ and σ) becomes 
fairly straightforward. One can obtain a time series of, 

say, daily asset values by summing daily updated mar-
ket capitalizations with quarterly updated book values 
of liabilities. With the time series in place, one can 
obtain the daily logarithmic asset returns and then 
compute the sample mean and standard deviation of 
the return as the estimates for µ and σ. Indeed, the 
market value proxy method has been used in the 
empirical credit risk literature as well, for example, 
Brockman and Turtle (2003) and Eom et al. (2004). 

However, the quality of the market value proxy 
method is questionable. It has been argued in Wong and 
Choi (2009) that such a method will produce an upward 
biased estimate of the asset value. In fact, the bias mag-
nitude is directly related to how volatile the firm’s asset 
value is. The reason is not difficult to appreciate. When 
the value of a discount debt is artificially set to its par 
value, it has inflated the market value and the amount 
by which it has been inflated (the discount portion) 
increases with the firm’s volatility, by standard option 
pricing theory. Its impact on credit analysis has not, in 
our opinion, been fully appreciated in the literature. For 
example, the market value proxy makes the firm’s 
equity (as a call option) always in the money at the time 
of assessing credit risk. If other things are equal, the 
DTD will be biased upwards, making the estimated 
default probability smaller than it should be. In light of 
this, it is unclear as to how one should interpret the 
empirical findings in, say, Eom et al. (2004). 

To illustrate the market value proxy method, we con-
sider three firms in different sectors and countries — 
IBM, Barclays, and Tokio Marine. The input variables 
used to estimate DTD and DTD* are given in Panel A 
of Table 1. Their values are as of the end of December 
2011. Note that the last entry is equity volatility. It is 
not needed for the market value proxy method, but 
will be used for the method discussed in the next sec-
tion. For IBM, Barclays and Tokio Marine, the values 
(except for equity volatility) are in million USD, mil-
lion GBP and million JPY, respectively. In order to 
compute µ and σ, we use one year of market capitali-
zations on a daily basis and add quarterly updated 
book value of liabilities to form one year’s worth of 
daily asset value time series. We then compute the 
sample mean and standard deviation of the continu-
ously compounded daily returns. The values for µ and 
σ are annualized in the typical fashion. With the 
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Table 1.  Different estimation methods on three types of firms.

IBM
(Million USD)

Barclays 
(Million GBP)

Tokio Marine
(Million JPY)

Panel A: Input Variables
Market cap 216,724 21,477 1,371,714
Short-term debt 39,843 255,193 1,922,395
Long-term debt 21,915 171,657 121,673
Other liabilities 28,506 1,004,083 12,095,019
Equity volatility 22.44% 56.15% 31.56%

Panel B: The Market Value Proxy Method
µ 14.91% −6.94% −7.53%
σ 16.06% 6.67% 4.84%
Asset value (12/2011) 306,988 1,452,410 15,510,801
DTD (12/2011)  8.4697 −0.8495 0.3326
DTD* (12/2011)  7.6215 0.2233 1.9147

Panel C: The Volatility Restriction Method
µ 17.03% −7.69%    −27.51%
σ 18.19% 3.45%   12.74%
Asset value (12/2011) 278,482 448,327   3,415,782
DTD (12/2111) 10.2009 5.6874    2.0445
DTD* (12/2011)  9.2645 7.8173    4.2032

Panel D: The KMV Method
µ 17.09% −7.90%  −26.90%
σ 18.51% 6.09%   16.84%
Asset value (12/2011) 267,464 359,291   3,352,857
DTD (12/2011)  9.8056 −0.4710    1.4360
DTD* (12/2011)  8.9748 0.8563    3.1174

Panel E: The Transformed-Data MLE Method (with the KMV assumption)
µ 13.06% −1.58%   −20.33%
σ 18.47% 6.91%   16.83%
Asset value (12/2011) 267,464 358,293  3,352,858
DTD (12/2011)  9.6054 0.4517    1.8285
DTD* (12/2011)  8.9911 0.7148    3.1208

Panel F: The Transformed-Data MLE Method (including other liabilities)
µ 10.70% −1.02%   −5.08%
σ 18.02% 1.54%     5.17%
δ 45.78% 61.83%    60.78%
Asset value (12/2011) 280,498 979,658 10,696,331
DTD (12/2011)  8.7478 0.5292 1.6400
DTD* (12/2011)  8.2132 1.1915 2.6339

parameter values in place, we then compute the DTD 
and DTD* for the end of December 2011 according to 
Equations (4) and (5). The calculation assumes the 
maturity equal to one year and the debt amount equal 
to the total liabilities at the December end. The results 
are reported in Panel B of Table 1. 

2.2. The Volatility Restriction Method

A popular way of implementing the Merton (1974) 
model for pricing corporate bonds and other credit 

sensitive instruments is the volatility restriction 
method of Jones et al. (1984) and Ronn and Verma 
(1986). Here, we present the version by Ronn and 
Verma (1986) which has been widely applied in 
deposit insurance literature along with the Merton 
(1977) deposit insurance pricing model. The method 
has also been applied in the empirical credit risk 
literature such as Hillegeist et al. (2004) and 
Campbell et al. (2008) without recognizing that their 
estimation method is in essence that of Ronn and 
Verma (1986).
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The volatility restriction method uses the following 
two-equation system:

 ( ; )t tS S V σ=  (6)

 
( )

( ; )t

t
s t

t

V
N d

S V
σ σ

σ
=

 
(7)

where ( ; )tS V σ , N(.) and d
t
 have already been given 

in Equations (2) and (3), and σ
St
 is equity volatility. 

Equation (6) links the observed market capitalization 
to its theoretical counterpart implied by the model. 
Equation (7) forms a volatility restriction linking the 
equity volatility to the asset volatility where its right-
hand side can be derived by applying Ito’s lemma to 
the pricing formula in Equation (2). There are two 
unknowns in the above two equation system — V

t
 and 

σ. With the two equations, one can proceed to solve 
for the two unknowns.3

In pricing applications, the volatility restriction 
method is a calibration which can be carried out just 
for one time point. Once V

t
 and σ are available, one can 

compute the prices of contingent claims. For the DTD, 
however, one must also know µ. There are two ways of 
obtaining such an estimate. First, one can repeatedly 
solve the two-equation system to obtain asset values 
for many time points, and then compute the sample 
mean of continuously compounded returns derived 
from these implied asset values to obtain an estimate 
for µ. Second, one can solve the two-equation system 
only once at the time of interest, and apply the obtained 
asset volatility to all earlier time points to obtain the 
implied asset values. These implied asset values will 
differ from those obtained by the first method, but can 
similarly be used to produce an estimate for µ. Here, 
we apply the second approach to obtain µ. 

We apply the volatility restriction estimation 
method to produce estimates for the three firms as of 
the end of December 2011. We assume that the debt 
maturity is one year and the default point (i.e., effec-
tive debt level for triggering default) is as in the KMV 
method (to be discussed in the next section). Since the 
KMV default point is always lower than the total lia-
bilities, this assumption alone will cause the DTD and 
other estimates to differ from those produced by the 
market value proxy method. This choice of default 

point is made to facilitate comparisons with the KMV 
and other methods to be introduced later. 

Equity volatility appears in the left-hand side of 
Equation (7), and its value is per usual estimated by 
computing the sample standard deviation of the con-
tinuously compounded equity returns over some sam-
ple period. For this, we use a one-year long time series 
of daily equity returns to estimate equity volatility, 
an input to the volatility restriction method. The 
equity volatilities for the three firms are given in Panel 
A of Table 1.

For estimating parameter µ, we use the estimated 
asset volatility corresponding to the last data point 
of the one-year long time series of daily market 
 capitalizations to solve for the entire time series of 
implied asset values. Our results are reported in 
Panel C of Table 1. It is clear that the results 
are quite different from those produced under the 
market value proxy method. This is of course not at 
all surprising due to at least two factors: (1) the vola-
tility restriction method recognizes the optionality of 
corporate liabilities but the market value proxy 
method does not, and (2) the volatility restriction 
method has been implemented with the KMV default 
point assumption that only factors in parts of the 
total liabilities. 

Duan (1994) pointed out a critical methodological 
problem with the volatility restriction method. In 
essence, the volatility restriction in Equation (7) is 
obtained by applying stochastic differentiation to the 
pricing formula in Equation (2). According to the 
Merton (1974) model, the derived equity volatility must 
be a stochastic variable. Since it is not a parameter, the 
sample standard deviation of equity returns should not 
be the quantity being plugged into the left-hand side of 
Equation (7). Conceptually, it cannot provide an addi-
tional restriction for identification. In practice, one can 
still obtain estimates as shown in this section, but abus-
ing the system could produce seriously biased esti-
mates as was demonstrated by, for example, Ericsson 
and Reneby (2005) using a simulation study. 

2.3. The KMV Method 

The KMV method powers the credit analytics service 
offered by Moody’s KMV. The method is described in 
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reasonable detail in Crosbie and Bohn (2003). The 
method is sometimes mistakenly understood to be the 
volatility restriction method described above.4 Crosbie 
and Bohn (2003) started out describing the KMV 
method on pages 13 and 16 as if it were the volatility 
restriction method but without a reference to Ronn 
and Verma (1986). Later on page 17, they described 
the actual KMV method as an iterative procedure con-
sisting of the following steps:

Step 1:  Apply an initial value of σ to Equation (5) to 
obtain a time series of implied asset values and 
hence continuously compounded asset returns. 

Step 2:  Use the time series of continuously com-
pounded asset returns to obtain updated esti-
mates for µ and σ.

Step 3:  Go back to Step 1 with the updated σ unless 
convergence has been achieved.

The KMV implementation fixes the maturity at one 
year and sets the default point to the sum of the short-
term debt and one half of the long-term debt. The 
argument given in Crosbie and Bohn (2003) is that the 
KMV experience suggests that a typical firm defaults 
when its asset value falls somewhere between the 
short-term debt and the total liabilities. We implement 
the KMV method on the three firms as before. Again, 
we use daily market capitalizations along with quar-
terly updated debt levels in 2011 to generate the esti-
mates. The parameter estimates and the DTDs at the 
year end for the three firms are reported in Panel D of 
Table 1. The results are very different compared with 
those by the market value proxy method or the volatil-
ity restriction estimation method.

The KMV method represents a clear methodologi-
cal improvement over the estimation methods dis-
cussed thus far. It is self-consistent in the sense that at 
convergence, the volatility estimate used to produce 
the implied asset values is also the one implied by the 
asset values. The KMV method has obvious limita-
tions though. Since its updating mechanism entirely 
depends on using the implied asset values, one cannot 
use the method to obtain any unknown parameters 
present in capital structure. This turns out to be an 
important limitation for dealing with financial firms, 
and for which we provide some discussion in the next 

section and present a practical and better alternative to 
the KMV method.

In addition to the confusion in the literature men-
tioned earlier about what the KMV method is, there 
is also a great deal of misunderstanding about the 
statistical estimation of the Merton model. For 
example, Bharath and Shumway (2008) commented 
in page 1345 on the estimation of the Merton (1974) 
model with the following statement: “Since the 
Merton DD model is not a typical econometric 
model, it is not clear … how its parameters might be 
estimated with alternative techniques. It is also 
unclear how standard errors for forecasts can be 
calculated for the Merton DD model.” However, 
their characterization was inaccurate. In the next 
section, we will discuss the maximum likelihood 
technique for this class of models that already 
appeared in the literature in 1994.

2.4.  The Transformed-Data Maximum 
Likelihood Estimation Method

The transformed-data maximum likelihood estimation 
(MLE) method for models such as Merton (1974) was 
proposed in Duan (1994, 2000). When the firm’s asset 
values are not directly observable, one can express the 
likelihood function of the observed equity values by 
viewing the equity values as the transformed data 
where the equity pricing formula in Equation (2) 
defines the transformation. It should be noted that the 
transformation involves the unknown asset volatility. 
By standard transformation theory, the likelihood of 
observed equity values must equal the product of the 
likelihood of the asset values (implied by the equity 
values) and the Jacobian of the inverse transformation 
(from the equity value back to the asset value). Once 
the likelihood function is in place, one can apply MLE 
and its associated statistical inference.

The transformed-data MLE method has been used 
in the deposit insurance and credit risk literature. For 
the applications in deposit insurance/banking litera-
ture, see for example, Duan and Yu (1994), Duan and 
Simonato (2002), Laeven (2002) and Lehar (2005). 
As to its applications in credit analysis, Ericsson and 
Reneby (2004, 2005) and Wong and Choi (2009) are 
some examples.
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The log-likelihood function based on a sample of n 
equity prices under the Merton (1974) model can be 
expressed as:
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(.)g  is the inverse of the equity pricing formula in 
Equation (2), and h

t
 is the length of time between two 

consecutive equity values. With h
t
, one can easily take 

care of missing equity values. Maximizing the log-
likelihood function in Equation (8) yields maximum 
likelihood estimators, µ̂  and σ̂ . 

Using MLE has clear advantages, because its statis-
tical properties are known and it gives users more than 
just point estimates. Maximum likelihood estimators 
are known to be normally distributed in an asymptotic 
sense. In addition, any differentiable transformation of 
maximum likelihood estimators is also a maximum 
likelihood estimator. Thus, the implied asset value can 
also be characterized by a sampling distribution, and in 
fact, any quantity of interest can be stated along with a 
confidence level. Following Duan (1994), the following 
asymptotic distributions are readily available for the 
two parameters and the implied asset value at time t:
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A similar result as in Equation (10) is available for 
other variables of interest, such as DTD and default 
probability. In those cases, one should recognize that 
the parameters affect the sampling error directly as 
well as indirectly through the implied asset value. 
Specifically, DTD at time t in accordance with 
Equation (4) should be viewed as a function of, 
ˆ ˆ ˆ( ),tV σ µ  and σ̂  because these three variables are all 

subject to sampling variations.
The KMV method was previously compared with 

the transformed-data MLE method in Duan, Gauthier 
and Simonato (2004). They argued in the case of the 
Merton (1974) model that two methods are equivalent 
both in principle and in implementation, but distinc-
tively different for models involving unknown capital 
structure parameters. Specifically, they showed by an 
example of estimation using 250 daily equity values 
that the parameter estimates and the implied asset 
value time series produced by the two methods are 
virtually the same. For example, the KMV method 
converges to, ˆ ˆ0.025, 0.177µ σ= - = , and the last 
implied asset value, V

250
, equals 0.9708. By the trans-

formed-data MLE method, ˆ ˆ0.025, 0.175µ σ= - = , 
and V

250
 is 0.9713. They attributed the minor differ-

ences to numerical errors arising from two different 
numerical algorithms. It turns out that the theoretical 
argument of Duan et al. (2004) is flawed because a 
complication associated with singularity was over-
looked.5 The numerical difference of two methods 
become more pronounced when the equity, viewed as 
a call option, is more out-of-the-money. The differ-
ence is evident from our analysis of three firms using 
the transformed-data MLE method under the same 
KMV assumption of maturity and default point. The 
results for IBM and Tokio Marine reported in Panel E 
of Table 1 by and large confirm the similarity conclu-
sion, because their KMV default points are low rela-
tive to their market capitalizations.6 In the case of 
Barclays, the KMV default point is quite high and the 
divergence of two estimation methods is evident.

Putting the similarity/dissimilarity issue aside, the 
general non-equivalence argument of Duan et al. 
(2004) has important implications on  DTD, particu-
larly for financial firms. Taking Barclays as an exam-
ple, its default point at the end of December 2011, 
according to the KMV assumption, was 341 billion 
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GBP (short-term debt plus 50%  long-term debt), and 
its market capitalization was 21 billion GBP. Barclays 
also had other liabilities in the amount of 1,004 bil-
lion GBP, which is huge relative to its market capi-
talization but is not part of the KMV default point 
calculation. In contrast, IBM had KMV debt (default 
point) of 51 billion USD, market capitalization of 
217 billion USD, and other liabilities of 29 billion 
USD. Ignoring other liabilities of IBM may have a 
minimal effect, but excluding other liabilities of 
Barclays obviously runs a huge risk of understating 
its default point, underestimating its implied asset 
value and overestimating its asset volatility. 

It is worth noting one implementation issue generic 
to all estimation methods. Firms are dynamic entities, 
responding to environmental changes and also taking 
initiatives to grow or to consolidate. Over a sample 
period, large changes in a firm’s market capitalization 
may simply reflect scale changes but not the funda-
mental nature of its return per unit of assets. Failing to 
neutralize the effect caused by a scale change on mar-
ket capitalization is likely to produce an over- or 
under-statement of the asset return. A scale change, 
however, inflates asset volatility simply because of 
those large but artificial moves in the asset values. 
Duan (2010) and Duan et al. (2012) proposed to scale 
the implied asset value by its corresponding book 
value. Consider, for example, a firm that has just dou-
bled its asset base without making changes to any 
other aspect of its operations. This doubling of the 
asset base should in principle also double its implied 
asset value, market capitalization, and so on. After 
being scaled by its book value, however, the asset 
return will not exhibit an abnormal 100% jump as 
would happen otherwise. Obviously, if the book asset 
value stays unchanged throughout the sample period, 
such scaling has no effect as it should.

2.5.  Other Liabilities and the 
Transformed-Data MLE 
Estimation Method

To our knowledge, the KMV default point formula is 
not meant for financial firms. In fact, the research 
papers in the corporate default/bankruptcy prediction 
literature tend to exclude financial firms from analysis; 

for example, Duffie et al. (2007). Although the reasons 
for exclusion are not typically given, it is quite clear 
from the discussion above that putting financial and 
non-financial firms into a common data sample 
requires properly treating financial firms to avoid seri-
ous distortions to empirical results. It is also clear that 
financial firms need a special treatment of their default 
points. The challenge is how to factor in other liabili-
ties in an operationally feasible way.

To account for other liabilities, a method for their 
inclusion into the default point was proposed and 
implemented in Duan (2010) and Duan et al. (2012). 
A haircut is applied to other liabilities much like what 
the KMV assumption does to the long-term debt. The 
difference is that the specific haircut is not a predeter-
mined number and will be estimated using the trans-
formed-data MLE method. This estimated haircut 
method has already been  incorporated into the corpo-
rate default prediction  system under the Credit 
Research Initiative at the Risk Management Institute, 
National University of Singapore. The objective of 
that initiative is to provide objective third-party credit 
information as a public good through offering freely 
accessible daily updated default probabilities on the 
exchange-listed firms around the globe. 

The specific treatment of other liabilities involves 
the following definition of default point (i.e., relevant 
debt level for triggering default): 

F =  short-term debt + 0.5 × long-term debt
+ δ × other liabilities

where parameter δ defines the haircut. Setting δ = 0, 
one is back to the KMV default point assumption. 
Under the above generalized default point assump-
tion, the unknown parameters of the model increase 
from two (µ and σ) to three (µ, σ and δ) with the first 
two parameters governing the asset value dynamic 
and the additional one appearing solely in the capital 
structure. If one attempts to apply the KMV iterative 
procedure to estimate δ, it will become clear that δ 
cannot be updated by the implied asset values, 
because this parameter only appears in the capital 
structure. However, it is possible to estimate δ with the 
transformed-data MLE method because this parame-
ter is part of the Jacobian of the transformation from 
equity value back to the asset value.
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The following log-likelihood function used in 
Duan (2010) and Duan et al. (2012) has scaled the 
asset value by its corresponding book value:
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and t̂V  = g(S
t
; σ, F

t
, τ

t
), and g(.) is again the inverse of 

the equity pricing formula in Equation (2), A
t
 is the 

book asset value, and h
t
 is still the length of time 

between two consecutive equity values.
Panel F of Table 1 presents the estimation results 

on the same three firms that we have been analyzing 
throughout this paper. The estimates for δ range from 
0.46 for IBM to 0.62 for Barclays. The two financial 
firms (Barclays and Tokio Marine) have remarkably 

close δ. For an industrial firm like IBM, δ is small and 
the other liabilities are even smaller relative to the 
market capitalization. Therefore, using the KMV 
default point formula does not cause too much distor-
tion. In fact, comparing the volatility estimates for 
IBM under the KMV method with this method shows 
a minor difference. In the case of financial firms, the 
impact is quite big. It is also quite clear that the KMV 
default point assumption overestimates the asset vola-
tilities of financial firms. The implied asset values in 
the table suggest that the KMV default point assump-
tion has the effect of lowering their values. The net 
effect on DTD or DTD* is naturally a mixed one, 
sometimes higher and other times lower, and the 
results in the table suggests that the default point 
assumption indeed affects DTDs.

Since including other liabilities is meant to deal 
with financial firms, we further analyze its impact by 
considering more financial firms with two additional 
banks and two additional insurance companies from 
different regions of the world. Table 2 reports the 
estimation results on three banks: Bank of America, 
Barclays and DBS. Barclays has been presented ear-
lier in Table 1 but is included here for easy compari-
sons with other banks. Similarly, we present the 
results of three insurance companies in Table 3 where 

Table 2.  Banks using two estimation methods.

Bank of America 
(Million USD)

Barclays 
(Million GBP)

DBS
(Million SGD)

Panel A: Input Variables
Market cap 56,355 21,477 26,976
Short-term debt 617,218 255,193 47,696
Long-term debt 383,517 171,657 18,940
Other liabilities 1,038,408 1,004,083 210,572

Panel B: The KMV Method
µ −20.41% −7.90% −0.94%
σ 9.41% 6.09% 25.85%
Asset value (12/2011) 849,796 359,291 83,381
DTD (12/2011) −1.6927 −0.4710 1.2948
DTD* (12/2011) 0.5232 0.8563 1.4604

Panel C: The Transformed-Data MLE Method (Including Other Liabilities)
µ −6.45% −1.02% −3.88%
σ 3.39% 1.54% 4.51%
δ 57.40% 61.83% 67.24%
Asset value (12/2011) 1,456,323 979,658 224,990
DTD (12/2011) −0.8484 0.5292 1.8795
DTD* (12/2011) 1.0579 1.1915 2.7491

1250006.indd   1041250006.indd   104 6/29/2012   11:42:18 AM6/29/2012   11:42:18 AM



GLOBAL CREDIT REVIEW VOLUME 2 105

FAb1423  Global Credit Review Volume 2  29 June 2012 11:20 AM

Table 3.  Insurance companies using two estimation methods.

Sun Life
(Million CAD)

AXA SA
(Million EUR)

Tokio Marine
(Million JPY)

Panel A: Input Variables
Market cap 11,046 23,678 1,371,714
Short-term debt 694 103,590 1,922,395
Long-term debt 4,889 9,601 121,673
Other liabilities 188,766 543,661 12,095,019

Panel B: The KMV Method
µ −0.4061 −0.2891 −0.2690
σ 0.2389 0.4078 0.1684
Asset value (12/2011) 14,154 118,351 3,352,857
DTD (12/2011) 4.4863 −0.6972 1.4360
DTD* (12/2011) 6.3062 0.2156 3.1174

Panel C: The Transformed-Data MLE Method (Including Other Liabilities)
µ −0.0365 −0.0365 −0.0508
σ 0.0350 0.0784 0.0517
δ 0.5828 0.6172 0.6078
Asset value (12/2011) 122,856 460,403 10,696,331
DTD (12/2011) 1.3611 −0.0341 1.6400
DTD* (12/2011) 2.4077 0.4645 2.6339

Sun Life and AXA SA are new but Tokio Marine was 
previously reported. The input variables in Panel A of 
these two tables are given in million units of local 
currencies at the end of December 2011. Panels B 
and C reports the estimation results using the daily 
market capitalizations and quarterly updated finan-
cial statements in 2011. Panel B is for the KMV 
method whereas Panel C is for the transformed-data 
MLE method described in this section. The results in 
these tables confirm our earlier conclusion on finan-
cial firms; that is, other liabilities play an important 
role in their credit risk analysis. Moreover, the hair-
cut to other liabilities in setting an appropriate default 
point at the end of 2011 seems to vary little in this 
sample of banks and insurance companies, even 
though they are based in various domiciles.

In order to see the effect of estimation method over 
different phases of the macro environment, we repeat 
two estimation methods on Tokio Marine over the 
period from January 2004 to December 2011. We per-
form estimation once per month and use a one-year 
moving window of daily data. The plots in Figures 
1–4 are the monthly time series of estimates (implied 
asset values, asset volatilities, DTDs and DTD*s) for 
the KMV method and the transformed-data MLE 
method that factors in other liabilities. The KMV 

method consistently yields lower implied asset values 
as shown in Figure 1 and higher asset volatilities as in 
Figure 2. For DTD or DTD* reported in Figures 3 
and 4, the results are not as clear cut with the KMV 
method generating higher DTDs in the earlier period 
but lower DTDs in some months in the later period. 
Comparing Figures 3 and 4 clearly shows that DTD* 
is more stable over time than is DTD, confirming an 
earlier assertion about large sampling errors associ-
ated with the estimate for parameter µ.
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Figure 1.  Monthly time series of implied asset values for Tokio 
Marine under two estimation methods.
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The transformed-data MLE method (including 
other liabilities) has been previously implemented to 
obtain DTDs in a default study of US firms by Duan 
et al. (2012). In that study, all exchange-listed firms 
are put into the data sample, which of course includes 
financial firms. They proposed a  forward-intensity 
default prediction model to link defaults to some com-
mon risk factors shared by all firms, such as a bench-
mark interest, and individual firm attributes, such as 
liquidity and DTD. With the properly computed 
DTDs, they are able to show that their default predic-
tion model, after being fitted to the whole data sam-
ple, can perform equally well in the financial and 
non-financial subsectors, suggesting that incorporat-
ing other liabilities with a haircut into the default 
point is a productive way of dealing with financial 
firms that are typically of high leverage.

CONCLUSION

In this article, we introduce a popular credit risk meas-
ure known as DTD, describe its theoretical foundation 
and usage, and review the ways of implementation 
available in the literature. We cover the market value 
proxy method, the volatility restriction method, the 
KMV method and the transformed-data MLE method. 
Three types of firms are used to illustrate the implemen-
tation of these methods, and through which we gain 
better understanding of the methods’ strengths and 
weaknesses. We pay special attention to financial firms 
(banks and insurance companies) because of their eco-
nomic importance and uniqueness in capital structure. 
Financial firms typically have higher leverage than non-
financial firms, and the popular KMV estimation seems 
ill-suited for this category of firms. Blindly applying the 
KMV method is shown to cause serious distortion to 
credit analysis. We then introduce a recent advancement 
in the estimation of the Merton (1974) credit risk 
model, a method that specifically accounts for the high-
leverage feature of financial firms in the transformed-
data MLE framework of Duan (1994). The new 
approach is shown, through an analysis of three banks 
and three insurance companies from different regions of 
the globe, to differ from the KMV method in a material 
way. We contend that the new estimation method is 
superior compared with existing methods. This new 
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Figure 2.  Monthly time series of asset volatilities for Tokio 
Marine under two estimation methods.

0

1

2

3

4

5

6

7

8

9

The KMV Method

The Transformed-Data MLE Method (including other liabilities)

Figure 4.  Monthly time series of DTD*s for Tokio Marine under 
two estimation methods.
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Figure 3.  Monthly time series of DTDs for Tokio Marine under 
two estimation methods.
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method is also a practical technology because it has 
been incorporated into the default prediction system 
under the non-profit Credit Research Initiative at the 
Risk Management Institute of National University of 
Singapore to generate daily updated default probabili-
ties on exchange-listed firms around the globe.7

NOTES
1 For example, Bharath and Shumway (2008) concluded 

that DTD is not a sufficient statistic for default predic-

tion. Duffie et al. (2007) and Duan et al. (2012) showed 

that in addition to DTD, there are other variables sig-

nificantly contributing to default prediction.
2 DTD* is similar to the DTD in the KMV method, which 

uses a formula, i.e., Equation (5) of Crosbie and Bohn 

(2003), slightly different from Equation (5) of this 

paper. The KMV DTD replaces ln(V
t 
/F ) with its 

approximation (V
t
 − F )/F.

3 The method by Jones, Mason and Rosenfeld (1984) 

only uses Equation (7). The asset value is obtained by a 

different means.
4 Because of the exposition in Crosbie and Bohn (2003), 

the KMV method has been misunderstood by some as a 

two-equation volatility restriction method; for example, 

Chapter 11 of Caouette et al. (2008) and Footnote # 8 

of Eisdorfer and Hsu (2011). In fact, they, along with 

others such as Bharath and Shumway (2008) also failed 

to recognize that that the two-equation volatility restric-

tion method was first proposed by Ronn and Verma 

(1986) and has been widely applied in the deposit insur-

ance literature.
5 Singularity arises from casting the transformed-data 

problem in the EM algorithm framework. One can cre-

ate an incomplete-data estimation problem by viewing 

the observed equity price as the sum of the value pro-

duced by Equation (2) and some measurement error, 

and conduct a maximum likelihood estimation using 

the EM algorithm. Then by shrinking the measurement 

error, one is in effect back to the original estimation 

problem. There is a problem with this reasoning, how-

ever. Since the measurement error’s density function, a 

part of the complete-data likelihood, approaches the 

Dirac delta function as one shrinks the measurement 

error to zero (i.e., singularity), it dominates all other 

terms in the complete-data likelihood, and thus cannot 

be ignored. Consequently, one cannot be certain that 

the KMV method produces the maximum likelihood 

estimate. 
6 Note that under the KMV assumption, Tokio Marine’s 

other liabilities are not included in the default point 

calculation. In other words, its equity is much more in-

the-money than what it would otherwise be.
7 Details on the non-profit Credit Rating Initiative of Risk 

Management Institute can be found at http://rmicri.org.
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A Post-publication Clarification Note 
“Measuring Distance-to-Default for Financial and Non-Financial Firms” 

by J.C. Duan and T. Wang, Global Credit Review 2, 2012, p.95-108 
 

We introduced in Section 2.5 the transformed-data MLE estimation method when a firm’s 
other liabilities are factored in the estimation of its distance-to-default (DTD). The results for 
the examples presented in the paper under this case were actually taken directly from the 
Credit Research Initiative database at the Risk Management Institute (RMI) of National 
University of Singapore. The specific numbers for parameter estimates and DTD were 
computed with the estimation method implemented per its Technical Report (Version 2011, 
Update 1) whereas DTD* were computed according to Addendum 4 to the Technical Report.  

The way that RMI calculates the DTD involves two passes. In the first pass, it estimates a 
firm’s three free parameters – ߤ, ߪ  and ߜ	 . Optimization is performed on ߤ  and ߪ  without 
constraints, but ߜ is constrained to the unit interval [0, 1] in the first instance. Estimations are 
conducted monthly over the time series, and a moving sample of daily prices for two years is 
used. All subsequent estimations are subjected to a different interval constraint of [max(0, 

መ௡ିଵߜ െ 0.05), min(1, ߜመ௡ିଵ ൅ 0.05)], where ߜመ௡ିଵ	is the estimate of ߜ obtained in the previous 
month. In other words, a ten-percent band is placed around the previous estimate and the 
band is floored by 0 and capped at 1.  

The estimation is repeated for all firms in an economy. In the second pass, an economy is 
divided into financial and non-financial sectors, and for each sector, an average ߜ is obtained 
and used for all firms in that sector for that particular monthly estimation. For the second pass, 
the moving sample is shortened to one year. With the average	ߜ in place, one then uses the 
same estimation method for each firm to obtain the remaining two parameters: ߤ and	ߪ. 

The motivation for the RMI implementation is to obtain more stable parameter estimates. 
Because financial statements are available at best quarterly, there will never be more than 
three changes in the balance sheet over one year. Changes in the elements of the default point 
formula are critical to the identification of 	ߜ , because the asset value under the model 
specification is latent. Since any scale shift in the default point can be absorbed by a 
compensating change in the latent asset value, there needs to be at least one change in the 
components of the default point over the sample to pin down ߜ, and more changes are of 
course better. A popular choice of estimation window for the DTD calculation is one year.  
Using a two-year moving window in the first pass strikes a balance between more and timely 
information. Switching back to the one-year moving window in the second pass is to conform 
to the standard practice. For further details on RMI’s DTD and DTD* implementation, 
readers are referred to the aforementioned RMI Technical Report (Section 3.2, page 79-81) 
and Addendum 4 to the Technical Report. 


